AXIALLY SYMMETRIC STATIONARY THERMAL
INTERACTION OF TWO BOUNDED CYLINDERS
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The analytical solution of a two-dimensional problem is discussed for general linear bound-
ary conditions with an arbitrary distribution of heat sources both inside the cylinders and on
their plane of contact. The main difficulty in applying the method of separation of variables

in the present case is connected with taking into account the "contact" conditions between the
two cylinders.

The present problem is of interest when calculations are to be made of the temperature fields in
radioelectronic instruments, The results we obtain can alsobe used to analyze thermal processes in nuclear
power engineering and in solving various technological problems (welding by friction, et al [1]).

We introduce the following variables and defining parameters of the process in question:
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We assume that the volume (u;) and surface (u) dimensionless heat source intensities depend on (¢
and p) and on p, respectively. We consider the boundary problem:
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Anticipating the possibility of using the method of separation of variables, we seek a solution of the
system (2)-(6) in the form
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where Rjp (0) and Zjy (¢;) satisfy, respectively, the homogeneous boundary conditions obtainable from Egs.
(3) and (4).
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For the Rin (p) we can take the Bessel functions [2] of zero order of the first kind, namely Jg (o, 0)
where the a;, are the roots of the equation

%ndy (%35) — By (2) = O. (8)

Assuming that u; for 0 =p =1has the expansion
u; = E Jo (@0) s, (9)
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we obtain from Eq. (2) the following set of differential equations for the Zj, (¢i):
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Let @iy (¢;) be an arbitrary particular solution of Eq. (10). Then the general solution of Eg. (10) which
takes into account the boundary condition (4) can be written in the form
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The main difficulty in solving the problem is that of determining the constants C;, in taking into
account the conditions of "contact.”

We use the representation of the function Jg(ejn0) in the form of an infinite series in terms of the
functions Jo(ozjmp) for 0<p<l,izjandform=1,2,,.. Let
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Taking Eq. (8) into account, we obtain, using formulas of the type [3]
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Let us assume also that
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From Eq. (6) we obtain, taking note of Egs. (13) and (15),
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Finally, using Eqs. (13) and (16), we deduce from Eq. (5) the Cyp;
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Introducing the notation
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we obtain an infinite system of equations, linear in the By,
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where
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Using the last relation we find that
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Here we can show boundedness of K; by use of the relation
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obtainable from Eq. (8) for large m, since
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Using Eqgs. (22)-(24) and also the obvious inequality
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It may be shown that oy < K/ozgn and the satisfaction of inequality (21) thenbecomes obvious.
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It is known [6] that a system of the type (19a), subject to the condition (21), has a unique determinate
solution for an arbitrary set of Vy if

0< EVn<°°x whereln 2 Bi < co.
n=1 n=1

In finding the solution of the system (19a) it is convenient to combine iteration of the values of By

for n >N, if 2 oy < 1, with the use of direct methods (for example, the method of Gaussian elimination)
n=N
for the subsystem of the system (19a), consisting of the first N equations.

Finding C,,,, subsequent to determining Ci from Eq. (16) and substitution of C;y, into Eq. (11), we
finally obtain an analytic expression for ®{. The temperature at an arbitrary point of the space (z€ [—d,,
d,}, r € [0, R]) can be calculated from Egs. (7) and (11), with Eq. (1) taken into account.

The solution of the problem is substantially simplified when
hy L1 and g1 <<1 (25)

conditions which are often realized when materials of sharply differing thermophysical properties are in
contact (metals and heat insulators), and when there is a moderate intensity of heat transfer with the sur-
rounding medium.

When the conditions (25) are satisfied, we usually have the valid expansions
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For the special case in which uj and u have constant values, we can determine the ®in (€1) with the

aid of the relations
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satisfied for 0 = p=< 1 and h; > 0 [4] for the roots of Eq. (8). Then
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Thus the temperature field of the physical system in which the heat source intensities (uy, u,, and u) are
constant can, when the conditions (25) apply, be calculated from the formulas (26) when account is taken

of the relations (11), (27)-(29), (18) and (20). The method we have described can, in conjunction with the
Laplace transformation, also be used in solving corresponding nonstationary problems. However, in view
of their complexity, the resulting formulas can be conveniently applied only in finding a first approximation
to the solution of the problem, corresponding to the so-called regular state of the system.

NOTATION
t; temperature of i~-th eylinder (i =1, 2);
te ambient temperature;
Bi, v{  heat transfer coefficient to medium;
y~1 contact thermal resistance between cylinders;
A{ thermal conductivity;
R radius;
d; height of cylinder.
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